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Bayesian additive regression trees (BART) are a flexible regression technique that uses a
sum-of-trees ensemble to approximate the conditional mean of a response variable. As a
predictive modeling tool, BART models have many desirable features. In particular, the default
BART model fit tends to generalize well, typically requires little or no hyperparameter tuning,
and enables you to assess uncertainty in the model predictions on the basis of posterior
sample variability. In this paper, we provide an overview of BART models, compare them to
other sum-of-trees ensembles, discuss computational considerations, and demonstrate how
you can train and score BART models by using the new BART procedure and Bayesian
Additive Regression Trees action set in SAS R©Visual Statistics software.

Introduction

Modeling an outcome, or target, variable is a common task for statisticians and data scientists.
Bayesian additive regression trees (BART) provide an approach to outcome modeling that
performs well when used as a purely predictive technique, and they can also be successfully
used in causal analysis as a tool for studying the relationship between an outcome and treatment
variables.

As a purely predictive model, the BART model has many desirable features (Chipman, George,
and McCulloch 2010). By using a sum-of-trees ensemble, BART models inherit many of the
desirable properties of tree-based modeling techniques: namely, they are nonparametric, they
can incorporate a mix of continuous and categorical predictors, they do not require the explicit
modeling of interaction terms, and they can naturally handle missing values in the predictor
variables. BART models also have a number of desirable properties that are more specific to the
models’ Bayesian nature. In particular, these models use a prior distribution that is typically
effective at limiting overfitting to the training data. The default specifications of a BART prior tend
to perform well in terms of model fit, and this performance does not change significantly if there
are small changes in the prior parameters. For this reason, a popular feature of these models is
that they usually do not require hyperparameter tuning. Moreover, you can assess uncertainty in
the BART model predictions from a Bayesian perspective by examining variability in the
predictions from the samples of the ensemble through the use of credible intervals. In addition to
performing well as purely predictive models, BART models have also formed the basis of
top-performing methods in causal inference competitions (Dorie et al. 2019).
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Starting in the 2022.1.1 release of SAS Visual Statistics, you can fit BART models of normally
distributed response variables either by using the BART procedure or by using the bartGauss

action in the Bayesian Additive Regression Trees (bart) action set. A BART model that you train
using either the procedure or the action can be saved as an analytic store. With the analytic
store, you can score new observations by using the ASTORE procedure, the bartScore action in
the bart action set, or the score action in the astore action set. In addition to scoring new
observations, you can use the bartScoreMargin action to compute predictive margins by using a
saved model. When the appropriate set of causal assumptions are satisfied, the computation of
predictive margins corresponds to a regression-based approach to estimating potential outcomes
means in a counterfactual framework.

This paper provides an introduction to using these new BART-based modeling tools and is
organized as follows. First, the section “BART Model for Normal Data” provides an overview of
BART models. The section “BART Models in SAS Visual Statistics” discusses the new
implementation of BART modeling in SAS Visual Statistics, computational considerations, and
how BART models compare to other tree-based modeling methods in SAS R©Viya R©. “Example 1:
Comparing Model Fit” illustrates how you can train a BART model and use it to score new data,
and it compares the BART model performance to that of other tree-based methods. “Example 2:
Computing Predictive Margins” shows how to use BART models to estimate causal effects.

BART Model for Normal Data

For a response y that is assumed to follow a normal distribution,

y = f(x) + ε, ε ∼ N(0, σ2)

a Bayesian additive regression trees (BART) model uses a sum-of-trees ensemble to
approximate f(x), the conditional mean of y given the vector of predictors x.

As described by Chipman, George, and McCulloch (2010), the development of the BART model
was motivated by the performance of sum-of-trees ensembles, and in particular by the weak
learner property that is used in gradient boosting algorithms. BART models take a Bayesian
approach to creating an ensemble in which the individual trees are subject to a weak learner
property that limits the contribution of any one tree to the ensemble prediction. For these models,
the weak learner property is created through the use of a well-chosen regularization prior. A
BART model is fit by using a Bayesian backfitting Markov chain Monte Carlo (MCMC) algorithm.
This algorithm uses a form of Gibbs sampling to produce samples of the sum-of-trees ensemble
by successively modifying each tree in the ensemble. The final fitted BART model consists of
many samples of the ensemble that you save for prediction.

The subsections that follow provide details about the components of a BART model. “BART Prior
Distribution” provides a summary of the BART prior distribution and how the prior creates the
weak learner property of the ensemble. “Sampling the Posterior” summarizes the process by
which you obtain the posterior samples of the sum-of-trees ensemble.
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BART Prior Distribution

The following definitions describe components of the BART prior distribution:

• m denotes the number of trees in the ensemble.

• Tj denotes the structure of the j th tree.

• Mj denotes the set of terminal node, or leaf, parameters in the j th tree.

• bj denotes the number of terminal nodes in the j th tree.

• µ`j denotes the terminal node parameter associated with the `th terminal node in the j th
tree.

Prior distributions of this form assume independence between the tree structures and
conditionally independent terminal node parameters, given the tree structure. The priors for the
tree structure p (Tj), the terminal node parameters p (µ`j | Tj), and the variance term p

(
σ2
)

are
chosen to form a regularization prior that limits the contribution of a single tree to the model fit.
The use of a regularization prior enforces the so-called weak learner property on the individual
trees (Chipman, George, and McCulloch 2010). In particular, to create the weak learner property,
the prior is chosen to place greater prior probability on simpler tree structures and to applying
shrinkage to the leaf parameters through the choice of their prior mean and variance.

The tree prior places greater prior probability on simpler tree structures, primarily through how it
determines the prior probability that a node will be split. Based on the recommendations of
Chipman, George, and McCulloch (1998), the probability of a node being split is determined by a
power function of the node’s depth from the root node. This function depends on the choice of a
base-splitting probability and the function’s degree, which is chosen to assign higher prior
probability to smaller trees. For splitting a node, the distribution for sampling the splitting rule is
determined by two components: first, a distribution for selecting which variable to use for splitting
the node; and second, a distribution for selecting the splitting criterion, given the selected
variable. The choice of variable to split on and the splitting rule are both sampled from a uniform
distribution.

The leaf parameters p (µ`j | Tj) use a normal prior that has mean µµ and variance σ2µ. Given the
assumed form of the BART prior, the conditional mean of the response, given the predictor
variables, f(x) = E [Y | X], is the sum of m independent and identically distributed (iid) normal
random variables and has mean mµµ and variance mσ2µ. As described by Chipman, George, and
McCulloch (2010), the parameters µµ and σ2µ are chosen to assign high probability to values
within the range of the training data.

For a specified value of a constant k > 0, the values µµ and σ2µ are determined by considering a
linear transformation of the response variable that results in a range of (−0.5, 0.5). After such a
transformation, the leaf parameter prior is given by a normal prior that has mean 0 and variance
0.5
k
√
m

. As noted by Chipman, George, and McCulloch (2010), these choices of parameter values
limit the contribution of a single tree and result in a decreasing prior variance for µ`j as the
number of trees in the ensemble m increases.

The prior for the variance p
(
σ2
)

is chosen to follow a scaled inverse chi-square distribution that
has degrees of freedom υ and scale parameter λ. As described by Chipman, George, and
McCulloch (2010), the choice of parameters υ and λ can be informed by the training data.
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Sampling the Posterior

Given a training data set, a Bayesian backfitting MCMC algorithm is used to draw samples from
the posterior distribution (Chipman, George, and McCulloch 2010). This algorithm is a form of
Gibbs sampling that can be described as follows. Let y denote the vector of training data
response values, and let T−j denote the tree structures for the m − 1 trees in the ensemble,
excluding the j th tree. Similarly, let M−j denote the set of all leaf parameters, excluding the j th
tree parameters. Each iteration of the sampling algorithms takes m consecutive draws,
j = 1, . . . ,m, from

Tj ,Mj | T−j ,M−j ,y, σ2

followed by a draw from
σ2 | T1,M1, . . . , Tm,Mm,y

As described by Chipman, George, and McCulloch (2010), the draws for the tree structures Tj
and leaf parameters Mj are simplified by observing that their conditional distribution depends on
T−j , M−j , and y only through the partial residuals for the fit, excluding the j th tree. Moreover,
the choice of the conjugate normal prior for the leaf parameters allows for the sampling of Tj and
Mj to be carried out in two steps. Let rj denote the partial residuals that are based on the fit,
excluding the j th tree. You then obtain the samples for Tj and Mj by taking successive draws
from

Tj | rj , σ2

Mj | Tj , rj , σ2

The draws for the tree structure Tj are obtained by using the Metropolis-Hastings sampling
algorithm described by Chipman, George, and McCulloch (1998). This algorithm considers
sampling from four operations that modify the tree structure—namely, pruning a pair of terminal
nodes, splitting a terminal node, changing the splitting rule of an internal node, or swapping a
splitting rule between a parent node and a child node. As described in Pratola et al. (2014),
although the changing and swapping operations significantly improve the fit of single-tree
models, these operations have less impact on the sum-of-trees-ensemble BART models. Limiting
the tree modifications to only pruning and splitting operations was observed to have a limited
effect on model fit while providing a significant computational benefit. For BART models that are
fit in SAS Visual Statistics, only the splitting and pruning operations are considered, and for
splitting operations a uniform distribution is used to sample both the splitting variable and the
splitting criterion.

Let Tnew denote the sampled modification to the tree structure Tj , and let q(· | ·) denote the
proposal density. The proposed modification is then accepted with the probability

α = min

{
q(Tj | Tnew)p

(
rj | Tnew, σ2

)
p (Tnew)

q (Tnew | Tj) p (rj | Tj , σ2) p (Tj)
, 1

}
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After the proposed operation is accepted or rejected, a draw is taken for the set of leaf
parameters Mj , and the partial residuals rj+1 are then updated for sampling the j + 1th tree
structure Tj+1 and the j + 1th set of leaf parameters Mj+1.

To begin the sampling, the ensemble is initialized with m single-node trees, or stumps. After an
initial burn-in period, the main simulation loop is conducted, from which samples of the ensemble
are saved for prediction. You can apply a thinning rate to the main simulation and save so that
only portion of the simulated samples are saved for prediction and for calculating posterior
statistics. After the main simulation loop finishes, you can obtain predictions from the fitted BART
model by averaging the predictions from each sample of the ensemble that was saved, and you
can assess uncertainty in the model predictions on the basis of the posterior sample variability.

BART Models in SAS Visual Statistics

Starting in the 2022.1.1 release of SAS Visual Statistics, you can fit BART models of normally
distributed response data either by using the BART procedure or by using the bartGauss action
in the bart action set. When you use either the procedure or the action, the default BART model
is trained by using a 200-tree ensemble, 100 burn-in iterations, and a main simulation loop of
1,000 iterations performed without thinning. The default prior that is used to train a BART model
in SAS Visual Statistics largely follows the recommendations of Chipman, George, and
McCulloch (2010). For the reasons described by Pratola et al. (2014), only the splitting and
pruning operations are considered when you sample tree-modifying operations. For more
information about the options that you can use to train a BART model in SAS Visual Statistics,
see the documentation of PROC BART and the bart action set.

You can use an analytic store save a BART model that is fit using either the BART procedure or
the bartGauss action. You can use the saved model to score new observations by using the
ASTORE procedure, the bartScore action in the bart action set, or the score action in the
astore action set. When scoring new observations through any of these methods, you can also
request equal-tail credible intervals for the average prediction and the individual predictions from
each saved sample of the ensemble. An example of using a saved BART model to score new
observations is provided in “Example 1: Comparing Model Fit.”

In addition to scoring new observations, you can also use a saved BART model to compute
predictive margins by using the bartScoreMargin action. The predictive margins are obtained by
fixing the value of one or more of the input variables and averaging the predicted values over the
distribution of the covariates in an input data table. In cases where the proper causal
assumptions hold (Hernán and Robins 2020), the predictive margin can correspond to an
estimate of a potential outcome mean, and a difference in predictive margins can represent a
causal effect estimate. In general, predictive margins can always be interpreted as average
predictions that are marginal to the covariate distribution in a scoring data set. An example of
using the bartScoreMargin action to compute predictive margins that are assumed to have a
causal interpretation is provided in “Example 2: Computing Predictive Margins.”

The remainder of this section discusses important computational considerations of working with
BART models and how BART models compare to other predictive models that use tree-based
ensembles.
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Computational Considerations

Training a BART model is a computationally intensive process. For each posterior sample, the
modifications to each tree are sampled sequentially, and each tree modification requires at least
one pass through the data. When you train a BART model in SAS Visual Statistics, there are
options that you can use to attempt to minimize the time it takes to train the model. However,
these options can require a significant amount of memory and might not be suitable for very
large data sets.

One option is to ensure that the training data are stored in memory when you train the model.
Storing the training data in memory can reduce the time it takes to access data during the
sampling of tree modifications. This option requires memory allocations that are in total
proportional to the number of observations times the size of an input row. By default, the data are
not stored in memory during model training.

A second option is to store a mapping of each observation to terminal nodes, or leaves, in
memory during model training. Storing a mapping of each observation to the terminal nodes that
it corresponds to removes the need to route an observation through a tree when you are
sampling updates to a tree’s structure and its leaf parameters. This option requires memory
allocations that are in total proportional to the number of observations times the number of trees.
By default, the observation-to-leaf mapping is not stored in memory during model training.

When you train a BART model on a cluster of machines, you can run multiple chains and divide
the MCMC samples across worker nodes. In addition to enabling multiple chains to be run in
parallel, distributed mode can reduce the time it takes for communications across the cluster of
machines. This mode requires distributing the training data to every worker so that each worker
running a separate chain has a full copy of the training data. This option does not apply to
single-machine mode. By default, distributed mode is used when the model is trained on a
cluster of machines. You can also specify the number of distributed chains to use, up to the
number of available worker nodes in the cluster, or you can specify that a single chain be used
with each worker node that is assigned a portion of the training data. Note that the fit of a BART
model depends on the number of chains that are run.

Scoring new observations by using a saved BART model requires routing observations through
each tree for all the saved samples of the ensemble. For the default BART model, this is 200,000
trees in total, so scoring new observations can also be time-consuming for large data sets. When
you are interested in using a BART model only for prediction and not for assessing uncertainty
in the model predictions by using equal-tail credible intervals, consider reducing the number of
samples of the ensemble that are saved for prediction.

BART Models Compared to Gradient Boosting and Random Forest Models

Gradient boosting models (Friedman 2001) and random forest models (Breiman 1996, 2001) are
other popular predictive models that use ensembles of decisions trees. In SAS Viya, you can use
the GRADBOOST and FOREST procedures in SAS R©Viya: Machine Learning software to fit
these types of models. Although BART models, gradient boosting models, and random forest
models all use tree-based ensembles, they differ substantially in terms of what you must specify
to train the model, how you train the model, and how you obtain predictions from the model.
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When you train either a gradient boosting or random forest model, the fitted model consists of a
single ensemble of trees. By contrast, the fitted BART model consists of the posterior samples
of a sum-of-trees ensemble that you saved for prediction. Moreover, you produce the samples
of the sum-of-trees ensemble in a BART model by successively sampling modifications to each
tree in the ensemble. This differs from how you train gradient boosting or random forest models,
for which trees are fitted and added to the ensemble individually. For gradient boosting models,
the trees are added sequentially, and the target value that you use to train a new tree is obtained
by evaluating the gradient of a loss function, given the current ensemble fit. For a random forest
model, you train each tree on a subset of the training data that is taken with replacement, and
the individual trees can be trained in parallel.

To control the process of training the individual trees in either a gradient boosting or random
forest model, you must specify a number of hyperparameters. For example, when using either
model, you must prespecify the maximum depth of a tree. You can tune these hyperparameters
manually, or you can use an automated process to search for the best configuration of parameter
values. Tuning the hyperparameters is important, because gradient boosting and random forest
models build trees in a greedy fashion, and the hyperparameters are needed to limit overfitting to
the training data by applying various forms of regularization. In contrast, BART models do not
use hyperparameters to impose regularization by setting constraints on tree structure such as
the maximum tree depth. Instead, BART models use a stochastic search algorithm and a
regularization prior to limit overfitting of the training data. BART prior parameters typically do not
require hyperparameter tuning, because the default BART model tends to perform well in terms
of model fit, and this performance does not change significantly if there are small changes in the
prior parameters.

Obtaining predictions from all three types of models requires routing new observations through
all the trees that make up the fitted model. For a gradient boosting model, the predictions from
the individual trees are combined by taking their summation and multiplying by the model
learning rate, or step size. For a random forest model, the predictions from each tree in the
ensemble are averaged to obtain the overall prediction. For a BART model, a prediction from
each sample of the ensemble is obtained by summing the predictions from each tree in that
sample. By averaging the predictions from all the saved posterior samples of the ensemble, you
then obtain the overall model prediction. Using a BART model to score new observations is a
more time-consuming process because the model consists of many samples of the ensemble;
this differs from using fitted gradient boosting and random forest models, which consist of a
single ensemble. Note that many commonly used interpretable model-agnostic explanation
methods score data by using a fitted model. For this reason, computing these quantities for
BART models can be time-consuming. However, a benefit of using the larger BART models is
that you can naturally assess uncertainty in the model predictions from a Bayesian perspective
by examining the variability of the posterior samples.

For more information about comparing BART models to gradient boosting and random forest
models, see “Example 1: Comparing Model Fit.”
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Example 1: Comparing Model Fit

This example uses simulated data to compare the fit of predictive models that are produced by
using different tree-based methods. In particular, it compares tree-based ensembles that are fit
by using the BART, GRADBOOST, and FOREST procedures. All three procedures were
developed specifically for SAS Viya and require the input data to be in a SAS R©Cloud Analytic
Services (CAS) data table accessible in your CAS session.

The following statements assume that your CAS engine libref is named mycas and generate the
data table inputData, which consists of 10,000 observations on a continuous response variable
(y) and 40 continuous variables (x1–x40):

data mycas.inputData / single =yes;

drop j w1-w40;

array x{40};

array w{40};

call streaminit(6524);

pi=constant("pi");

do i=1 to 10000;

u = rand("Uniform");

do j=1 to dim(x);

w{j} = rand("Uniform");

x{j} = (w{j} + u)/2;

end;

f1 = sin(pi * x1 * x2 );

f2 = (x3-0.5)**2;

f3 = x4;

f4 = x5;

fb = 10*f1 +20*f2+10*f3+5*f4;

y = fb + rand("Normal");

output;

end;

run;

For the simulation, only the variables x1–x5 affect the outcome y, and the variables x1–x40 are
all positively correlated.

The following statements fit a Bayesian additive regression trees (BART) model to these data:

proc bart data=mycas.inputData seed=9181 trainInMem mapInMem;

model y = x1-x40;

store mycas.bartFit;

run;
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PROC BART uses traditional modeling syntax, and the MODEL statement is required. You
specify the response variable and predictor variables in this statement. In this example, because
the input data are not large, the TRAININMEM and MAPINMEM options are specified to store
the data and elements of the model in memory when the model is trained. The mycas.bartFit
analytic store contains a representation of the model that you can use to score new
observations. The fit statistics for the fitted model are displayed in the “Fit Statistics” table in
Figure 1.

Figure 1: BART Model Fit Statistics
The BART Procedure

Fit Statistics

Average Square Error 0.97290

Note that for this example, the model is fit in single-machine mode and all the posterior samples
are generated from a single chain. When you train a BART model on a cluster of machines, the
default is to run multiple parallel chains and divide the MCMC samples across the worker nodes.
Because of the random sampling involved in generating the posterior samples, the fit of a BART
model depends on how many chains are run. For reproducibility, you can specify the number of
parallel chains to use, up to the number of available worker nodes, or you can specify that a
single chain be run, with each worker assigned only a portion of the training data.

For comparison, the following programs fit models to the same data table by using the
GRADBOOST and FOREST procedures, respectively:

proc gradboost data=mycas.inputData seed=9181;

autotune;

target y;

input x1-x40;

store mycas.gbFit;

run;

proc forest data=mycas.inputData seed=9181;

autotune;

target y;

input x1-x40;

store mycas.rfFit;

run;

When you use the GRADBOOST and FOREST procedures, the response, or target, variable is
specified in the TARGET statement and the predictor variables are specified in the INPUT
statement. Training gradient boosting and random forest models can involve the selection of
many hyperparameters. In this example, the AUTOTUNE statement is specified in order to
perform an automated search for a good combination of hyperparameter values. The models that
the GRADBOOST and FOREST procedures fit are saved in the analytic stores mycas.gbFit and
mycas.rfFit, respectively. The fit statistics for the gradient boosting and random forest models are
displayed in Figure 2 and Figure 3, respectively.
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Figure 2: Gradient Boosting Model Fit Statistics
Fit Statistics

Number
of Trees

Training
Average

Square Error

1 24.283

2 21.233

3 18.608

4 16.379

5 14.478

6 12.789

. .

. .

. .

. .

145 0.926

146 0.925

147 0.924

148 0.922

149 0.921

150 0.919

Figure 3: Random Forest Model Fit Statistics
Fit Statistics

Number
of Trees

OOB
Average

Square Error

Training
Average

Square Error

1 1.975 1.975

2 1.236 1.236

3 0.977 0.977

4 0.849 0.849

5 0.779 0.779

6 0.724 0.724

. . .

. . .

. . .

. . .

80 0.522 0.522

81 0.522 0.522

82 0.522 0.522

83 0.522 0.522

84 0.522 0.522

85 0.522 0.522

Note that the average square error (ASE) of the training data does not accurately indicate how
the models will generalize to new data because of the possibility of overfitting the model to the
training data. To obtain a fair comparison of the fits, a new data set of test observations is
simulated in the following program, using the same data-generating process that produced the
training data:

data mycas.toScoreData / single =yes;

drop j w1-w40;

array x{40};

array w{40};

call streaminit(1972);

pi=constant("pi");

do i=1 to 1000;

u = rand("Uniform");

do j=1 to dim(x);

w{j} = rand("Uniform");

x{j} = (w{j} + u)/2;

end;

f1 = sin(pi * x1 * x2 );

f2 = (x3-0.5)**2;

f3 = x4;

f4 = x5;

fb = 10*f1 +20*f2+10*f3+5*f4;

y = fb + rand("Normal");

output;

end;

run;
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The following statements use PROC CAS to invoke the bartScore action to score the new data
by using the saved BART model, and to invoke the score action in the astore action set to score
the new data by using the saved gradient boosting and random forest models. Note that you
could also use the score action to obtain predictions by using the saved BART model. After you
score the data by using the gradient boosting and random forest models, the alterTable action
in the table action set is used to change the name of the variable that contains the predicted
response values and to remove a column from the output data tables.

proc cas;

action bart.bartScore /

table = {name="toScoreData"}

restore = {name="bartFit"}

casOut = {name="scoredBARTData", replace=TRUE}

pred = "bartPred",

copyVars = {"i" "y"};

run;

action astore.score /

table = {name="toScoreData"}

rstore = {name="gbFit"}

casOut = {name="scoredGBData", replace=TRUE}

copyVars = {"i" "y"};

run;

action table.alterTable /

name = "scoredGBData"

columns = {{ name="P_y" rename="gbPred"}

{ name="_WARN_" drop=TRUE}};

run;

action astore.score /

table = {name="toScoreData"}

rstore = {name="rfFit"}

casOut = {name="scoredRFData", replace=TRUE}

copyVars = {"i" "y"};

run;

action table.alterTable /

name = "scoredRFData"

columns = {{ name="P_y" rename="rfPred"}

{ name="_WARN_" drop=TRUE}};

run;

quit;
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The following statements combine the three data tables into a SAS data set and compute the
test data ASE for the three different models:

data fitCheck;

merge mycas.scoredBARTData mycas.scoredGBData

mycas.scoredRFData;

by i;

bartSqErr = (y - bartPred)**2;

gbSqErr = (y - gbPred)**2;

rfSqErr = (y - rfPred)**2;

run;

proc means data=fitCheck mean;

var bartSqErr gbSqErr rfSqErr;

run;

Figure 4 shows the ASE for the test data. In this example, the BART model provides the best fit
for the test data. Moreover, the ASE values from the BART model for the training and test data
are both close to one, which is the expected value from an oracle model. For these data, the
BART model also has the smallest absolute difference between training and test data ASE
among the three models.

Figure 4: ASE for the Scored Data
The MEANS Procedure

Variable Mean

bartSqErr
gbSqErr
rfSqErr

1.0628698
1.2037748
1.5316406

In this example, the fitted BART model is used only to obtain point estimates for predicted values,
and equal-tail credible intervals are not used to assess uncertainty in the predictions. Although a
large number of posterior samples are required if you want to assess uncertainty in BART model
predictions, a BART model that saves fewer samples of the ensemble for prediction can in some
cases provide a comparable fit, as measured by statistics like the ASE. For example, Figure 5
shows how the ASE for the test data changes as the number of samples of the ensemble that
are saved for prediction increases.
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Figure 5: Test Data ASE for Increasing MCMC Sample Size

This example demonstrates how you use BART models for causal effect estimation, in particular
through the use of the bartScoreMargin action. It is important to note that the predictive margins
computed by the bartScoreMargin action do not always have a causal interpretation. In general,
the predictive margins are interpreted as covariate-adjusted marginal means that are obtained by
fixing a covariate level and averaging the predictions over the distribution of the remaining
covariates in an input data set. Attributing a causal interpretation to these estimates is
appropriate only when the data that you are analyzing and the model that you are using satisfy
the required causal assumptions. When you define a causal effect within a counterfactual
framework, the required assumptions would include that the data capture a well-defined causal
question. You must also assume that the variables that are not fixed in the predictive margin
computations represent a valid adjustment set for studying the causal relationship between the
outcome and the designated treatment variable that you intervene on. When these assumptions
are satisfied, the predictive margin computations correspond to an approach to effect estimation
that is based on regression, or response surface methodology. For more information about the
definition of causal effects in a counterfactual framework and the required assumptions, see the
“Overview of Causal Analysis” chapter in the SAS/STAT R©software documentation and references
therein.
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Example 2: Computing Predictive Margins

The data that this example analyzes are contained in the SmokingWeight data set that is used in
documentation examples for the CAUSALTRT procedure in SAS/STAT. The data are a subset of
the NHANES 1 Epidemiologic Follow-Up Study (NHEFS) used by Hernán and Robins (2020).
Like the PROC CAUSALTRT documentation examples, this example investigates the effect that
quitting smoking has on individuals’ change in weight over a 10-year period. In analyzing these
data, it is important to take into account how observations that have missing values in the
predictor values are handled. Because PROC CAUSALTRT uses generalized linear models to fit
models for the treatment and outcome variables, it excludes all observations that have missing
values for a covariate. This contrasts with the tree-based models that are fit by the BART
procedure, which can incorporate rules for handling missing values into node-splitting rules and
therefore provide predictions for all observations regardless of whether a covariate value is
missing. In this example, to compare more directly to the estimates obtained by using PROC
CAUSALTRT, in creating a CAS data table from the SmokingWeight data set, observations that
would not be used by PROC CAUSALTRT are removed.

To study the effect of interest, this example fits an outcome model by using PROC BART, saves
the model in an analytic store, and then uses PROC CAS to invoke the bartScoreMargin action
to compute the difference in predictive margins defined by different levels of the treatment
variable Quit.

To begin, the following statements invoke the BART procedure to fit a model for the outcome
variable Change:

proc bart data=mycas.smokingWeight seed=1976;

class Sex Race Education Exercise Activity Quit;

model Change = Quit Sex Education Exercise Activity

YearsSmoke PerDay Age;

store mycas.store1;

run;

In this example, the outcome model includes a number of categorical predictors, including the
designated treatment variable Quit, that are listed in the CLASS statement. The fitted model is
saved in an analytic store named mycas.store1.

To compute the predictive margins, the following statements first use PROC CAS to invoke the
bartScoreMargin action. The margins parameter defines predictive margins that intervene on
the input variables. Observations in an input data table are scored according to the specified
interventions, and the predictive margins are obtained by taking the mean of these predictions. In
this case, two predictive margins are defined for interventions on the designated treatment
variable Quit. The predictive margin named “Cessation” sets the value of Quit to 1, which
corresponds to a subject quitting smoking, and the predictive margin named “No Cessation” sets
the value of Quit to 0, which corresponds to a subject not quitting. These names are used in the
differences parameter to request the difference between these predictive margins.
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proc cas;

action bart.bartScoreMargin /

table = {name="smokingWeight"}

restore = {name="store1"}

margins= {

{ name="Cessation", at={{var="Quit" value="1"}}}

{ name="No Cessation",at={{var="Quit" value="0"}}}

}

differences = {

{ label="Cessation Difference"

refMargin="No Cessation"

evtMargin="Cessation"}

};

run;

quit;

If you make the proper causal assumptions, then because the data table that this example uses
to compute the predictive margin is the same as the training data, the predictive margin
estimates would correspond to potential outcome mean estimates and their difference would
provide an estimate of the average treatment effect (ATE). To estimate a conditional effect within
some subpopulation, a data table other than the training data can be used to compute the
predictive margins. In particular, to estimate the average treatment effect for the treated, or ATT,
you can compute the predictive margins by using only the observations that are in the
designated treatment condition. In general, you can use the bartScoreMargin action to score
predictive margins that intervene on more than one variable, and the predictions can be
computed for an input data table other than the training data.

Figure 6 shows the predictive margin estimates, their difference, and the 95% equal-tail credible
intervals for this example. The difference estimate of about 3.42 kilograms is comparable to the
ATE estimate that is obtained in the PROC CAUSALTRT documentation. If you are interested in
a function of the predictive margins other than the difference, you can use the casOut parameter
to create an output data table on the server that contains the predictive margin estimate from
each sample of the ensemble saved for prediction. You can then apply the function of interest to
these output data and compute the corresponding credible interval.

Figure 6: Quit Predictive Margins and Their Difference
Results from bart.bartScoreMargin

Predictive Margins

Description Estimate

95%
Equal-Tail

Interval

Cessation 5.19341 4.41642 5.95147

No Cessation 1.77156 1.35216 2.19989

As discussed in Dorie et al. (2019), a number of modifications to the BART models have been
proposed when they are used to estimate causal effects. A simple modification inspired by Hahn,
Murray, and Carvalho (2020) is to add to the BART model a covariate that contains predicted
propensity score values; the propensity score is the conditional probability of being assigned to
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the designated treatment condition. As described by Hahn, Murray, and Carvalho, including the
propensity score as a predictor can help reduce the bias from regularization and improve
estimation of a total effect. Moreover, it was observed by Dorie et al. (2019) that BART models
that are fit using the estimated propensity score values as a predictor produce credible intervals
that have better coverage rates for the treatment effect. To demonstrate this approach, the
following statements use the GAMSELECT procedure in SAS Visual Statistics to fit a model for
the treatment variable Quit:

proc gamselect data=mycas.smokingWeight;

class Sex Race Education Exercise Activity Quit;

model Quit(Event=’1’) = param(Sex Race Education Exercise

Activity) spline(Age) spline(PerDay) spline(YearsSmoke);

selection method=boosting;

output out=mycas.SmokingWeightPS pred=pScore

copyVars=(Quit Sex Race Education Exercise Activity

Change Age PerDay YearsSmoke);

run;

PROC GAMSELECT fits and performs model selection for generalized additive models. In this
example, the classification variables are included in the model as parametric effects and listed in
the PARAM option. The SPLINE option specifies nonparametric spline effects that are
constructed from continuous variables. A univariate spline term is constructed here for each
continuous predictor. The boosting selection method is used to select and fit the treatment model
for this example. The output data table SmokingWeightPS contains the predicted treatment
probabilities and the variables that are needed to train the BART model.

The following statements invoke the BART procedure to fit a new model for the outcome variable
that incorporates the predicted propensity score values, as well as to compute the Quit predictive
margins by using the new model:

proc bart data=mycas.SmokingWeightPS seed=1976;

class Sex Race Education Exercise Activity Quit ;

model Change = Quit Sex Education Exercise Activity

YearsSmoke PerDay Age pScore;

store mycas.store2;

run;

proc cas;

action bart.bartScoreMargin /

table = {name="smokingWeightPS"}

restore = {name="store2"}

margins= {{ name="Cessation", at={{var="Quit" value="1"}}}

{ name="No Cessation",at={{var="Quit" value="0"}}}}

differences = {{ label="Cessation Difference"

refMargin="No Cessation"

evtMargin="Cessation"} };

run;

quit;
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Figure 7 shows the predictive margin estimates and their difference obtained by using the
updated model. For this example, there is little difference in the potential outcome mean and ATE
estimates obtained using either model.

Figure 7: Predictive Margins and Their Difference with Propensity Score Predictor
Results from bart.bartScoreMargin

Predictive Margins

Description Estimate

95%
Equal-Tail

Interval

Cessation 5.23025 4.46545 5.97486

No Cessation 1.77635 1.35233 2.22522

Summary

Starting in the 2022.1.1 release of SAS Visual Statistics, you can fit BART models of normally
distributed response variables either by using the BART procedure or by using the bartGauss

action in the Bayesian Additive Regression Trees action set. A BART model that is fit using either
the procedure or the action can be saved as an analytic store and used with two additional
actions in the bart action set. You can use the bartScore action to score new observations by
using a fitted model, and you can use the bartScoreMargin action to compute predictive
margins.

BART models provide a powerful and easy-to-use tool for statisticians and data scientists who
want to model an outcome variable. By using a sum-of-trees ensemble to approximate the
conditional mean of a random variable, these models can incorporate a mix of continuous and
categorical predictors without requiring the explicit modeling of interaction terms, and they can
naturally incorporate rules for handling missing predictor values. Moreover, BART models are
user-friendly because of the typically robust performance of the default BART prior and the good
generalization of predictions from the default BART model. As a result, these models typically do
not require hyperparameter tuning, and as shown in “Example 1: Comparing Model Fit,” the
default BART model fit is usually comparable to the fit of other tree-based methods that use
hyperparameter tuning.

Unlike other tree-based predictive models that you obtain by using gradient boosting or random
forests, BART models consist of many posterior samples of a sum-of-trees ensemble instead of
a single ensemble. As a result, a BART model is typically much larger than a model that is
obtained by using gradient boosting or random forests. A downside of the larger BART model is
that it can be a more time-consuming process both to train a BART model and to score new
observations by using the fitted model. The larger amount of time required to score observations
can have an impact on the explainability of a BART model, because many commonly used
model-agnostic explanation methods involve scoring data by using a fitted model. However, a
benefit of using a BART model is that you can use a Bayesian perspective to assess uncertainty
in the model predictions by assessing variability in the posterior samples. As a result, BART
models can be well suited for situations where assessing uncertainty in the model predictions
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might be of greater importance than explaining how predictions are obtained from the model. As
demonstrated in “Example 2: Computing Predictive Margins,” an application where this is the
case, and one for which BART models have been observed to perform quite well, is the
estimation of causal effects by using a regression-based, or response-surface-based, approach.
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